Copied to
clipboard

G = C22×C3⋊Q16order 192 = 26·3

Direct product of C22 and C3⋊Q16

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22×C3⋊Q16, C12.32C24, Dic6.28C23, C63(C2×Q16), (C2×C6)⋊9Q16, C33(C22×Q16), C3⋊C8.29C23, C12.256(C2×D4), (C2×C12).212D4, C4.32(S3×C23), (C2×Q8).209D6, C6.151(C22×D4), (C22×C6).211D4, (C22×C4).398D6, (C22×Q8).13S3, (C3×Q8).21C23, Q8.31(C22×S3), (C2×C12).549C23, (C6×Q8).230C22, C23.114(C3⋊D4), (C22×Dic6).18C2, (C22×C12).281C22, (C2×Dic6).306C22, (Q8×C2×C6).6C2, C4.26(C2×C3⋊D4), (C2×C6).586(C2×D4), (C22×C3⋊C8).14C2, (C2×C3⋊C8).287C22, C2.24(C22×C3⋊D4), (C2×C4).155(C3⋊D4), (C2×C4).630(C22×S3), C22.114(C2×C3⋊D4), SmallGroup(192,1368)

Series: Derived Chief Lower central Upper central

C1C12 — C22×C3⋊Q16
C1C3C6C12Dic6C2×Dic6C22×Dic6 — C22×C3⋊Q16
C3C6C12 — C22×C3⋊Q16
C1C23C22×C4C22×Q8

Generators and relations for C22×C3⋊Q16
 G = < a,b,c,d,e | a2=b2=c3=d8=1, e2=d4, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=c-1, ce=ec, ede-1=d-1 >

Subgroups: 520 in 258 conjugacy classes, 127 normal (15 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C6, C6, C8, C2×C4, C2×C4, Q8, Q8, C23, Dic3, C12, C12, C12, C2×C6, C2×C8, Q16, C22×C4, C22×C4, C2×Q8, C2×Q8, C3⋊C8, Dic6, Dic6, C2×Dic3, C2×C12, C2×C12, C3×Q8, C3×Q8, C22×C6, C22×C8, C2×Q16, C22×Q8, C22×Q8, C2×C3⋊C8, C3⋊Q16, C2×Dic6, C2×Dic6, C22×Dic3, C22×C12, C22×C12, C6×Q8, C6×Q8, C22×Q16, C22×C3⋊C8, C2×C3⋊Q16, C22×Dic6, Q8×C2×C6, C22×C3⋊Q16
Quotients: C1, C2, C22, S3, D4, C23, D6, Q16, C2×D4, C24, C3⋊D4, C22×S3, C2×Q16, C22×D4, C3⋊Q16, C2×C3⋊D4, S3×C23, C22×Q16, C2×C3⋊Q16, C22×C3⋊D4, C22×C3⋊Q16

Smallest permutation representation of C22×C3⋊Q16
Regular action on 192 points
Generators in S192
(1 134)(2 135)(3 136)(4 129)(5 130)(6 131)(7 132)(8 133)(9 66)(10 67)(11 68)(12 69)(13 70)(14 71)(15 72)(16 65)(17 156)(18 157)(19 158)(20 159)(21 160)(22 153)(23 154)(24 155)(25 151)(26 152)(27 145)(28 146)(29 147)(30 148)(31 149)(32 150)(33 173)(34 174)(35 175)(36 176)(37 169)(38 170)(39 171)(40 172)(41 119)(42 120)(43 113)(44 114)(45 115)(46 116)(47 117)(48 118)(49 77)(50 78)(51 79)(52 80)(53 73)(54 74)(55 75)(56 76)(57 85)(58 86)(59 87)(60 88)(61 81)(62 82)(63 83)(64 84)(89 109)(90 110)(91 111)(92 112)(93 105)(94 106)(95 107)(96 108)(97 125)(98 126)(99 127)(100 128)(101 121)(102 122)(103 123)(104 124)(137 177)(138 178)(139 179)(140 180)(141 181)(142 182)(143 183)(144 184)(161 189)(162 190)(163 191)(164 192)(165 185)(166 186)(167 187)(168 188)
(1 81)(2 82)(3 83)(4 84)(5 85)(6 86)(7 87)(8 88)(9 53)(10 54)(11 55)(12 56)(13 49)(14 50)(15 51)(16 52)(17 97)(18 98)(19 99)(20 100)(21 101)(22 102)(23 103)(24 104)(25 40)(26 33)(27 34)(28 35)(29 36)(30 37)(31 38)(32 39)(41 106)(42 107)(43 108)(44 109)(45 110)(46 111)(47 112)(48 105)(57 130)(58 131)(59 132)(60 133)(61 134)(62 135)(63 136)(64 129)(65 80)(66 73)(67 74)(68 75)(69 76)(70 77)(71 78)(72 79)(89 114)(90 115)(91 116)(92 117)(93 118)(94 119)(95 120)(96 113)(121 160)(122 153)(123 154)(124 155)(125 156)(126 157)(127 158)(128 159)(137 190)(138 191)(139 192)(140 185)(141 186)(142 187)(143 188)(144 189)(145 174)(146 175)(147 176)(148 169)(149 170)(150 171)(151 172)(152 173)(161 184)(162 177)(163 178)(164 179)(165 180)(166 181)(167 182)(168 183)
(1 44 178)(2 179 45)(3 46 180)(4 181 47)(5 48 182)(6 183 41)(7 42 184)(8 177 43)(9 126 169)(10 170 127)(11 128 171)(12 172 121)(13 122 173)(14 174 123)(15 124 175)(16 176 125)(17 80 29)(18 30 73)(19 74 31)(20 32 75)(21 76 25)(22 26 77)(23 78 27)(24 28 79)(33 70 102)(34 103 71)(35 72 104)(36 97 65)(37 66 98)(38 99 67)(39 68 100)(40 101 69)(49 153 152)(50 145 154)(51 155 146)(52 147 156)(53 157 148)(54 149 158)(55 159 150)(56 151 160)(57 93 187)(58 188 94)(59 95 189)(60 190 96)(61 89 191)(62 192 90)(63 91 185)(64 186 92)(81 109 163)(82 164 110)(83 111 165)(84 166 112)(85 105 167)(86 168 106)(87 107 161)(88 162 108)(113 133 137)(114 138 134)(115 135 139)(116 140 136)(117 129 141)(118 142 130)(119 131 143)(120 144 132)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176)(177 178 179 180 181 182 183 184)(185 186 187 188 189 190 191 192)
(1 152 5 148)(2 151 6 147)(3 150 7 146)(4 149 8 145)(9 109 13 105)(10 108 14 112)(11 107 15 111)(12 106 16 110)(17 139 21 143)(18 138 22 142)(19 137 23 141)(20 144 24 140)(25 131 29 135)(26 130 30 134)(27 129 31 133)(28 136 32 132)(33 57 37 61)(34 64 38 60)(35 63 39 59)(36 62 40 58)(41 52 45 56)(42 51 46 55)(43 50 47 54)(44 49 48 53)(65 90 69 94)(66 89 70 93)(67 96 71 92)(68 95 72 91)(73 114 77 118)(74 113 78 117)(75 120 79 116)(76 119 80 115)(81 173 85 169)(82 172 86 176)(83 171 87 175)(84 170 88 174)(97 192 101 188)(98 191 102 187)(99 190 103 186)(100 189 104 185)(121 168 125 164)(122 167 126 163)(123 166 127 162)(124 165 128 161)(153 182 157 178)(154 181 158 177)(155 180 159 184)(156 179 160 183)

G:=sub<Sym(192)| (1,134)(2,135)(3,136)(4,129)(5,130)(6,131)(7,132)(8,133)(9,66)(10,67)(11,68)(12,69)(13,70)(14,71)(15,72)(16,65)(17,156)(18,157)(19,158)(20,159)(21,160)(22,153)(23,154)(24,155)(25,151)(26,152)(27,145)(28,146)(29,147)(30,148)(31,149)(32,150)(33,173)(34,174)(35,175)(36,176)(37,169)(38,170)(39,171)(40,172)(41,119)(42,120)(43,113)(44,114)(45,115)(46,116)(47,117)(48,118)(49,77)(50,78)(51,79)(52,80)(53,73)(54,74)(55,75)(56,76)(57,85)(58,86)(59,87)(60,88)(61,81)(62,82)(63,83)(64,84)(89,109)(90,110)(91,111)(92,112)(93,105)(94,106)(95,107)(96,108)(97,125)(98,126)(99,127)(100,128)(101,121)(102,122)(103,123)(104,124)(137,177)(138,178)(139,179)(140,180)(141,181)(142,182)(143,183)(144,184)(161,189)(162,190)(163,191)(164,192)(165,185)(166,186)(167,187)(168,188), (1,81)(2,82)(3,83)(4,84)(5,85)(6,86)(7,87)(8,88)(9,53)(10,54)(11,55)(12,56)(13,49)(14,50)(15,51)(16,52)(17,97)(18,98)(19,99)(20,100)(21,101)(22,102)(23,103)(24,104)(25,40)(26,33)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39)(41,106)(42,107)(43,108)(44,109)(45,110)(46,111)(47,112)(48,105)(57,130)(58,131)(59,132)(60,133)(61,134)(62,135)(63,136)(64,129)(65,80)(66,73)(67,74)(68,75)(69,76)(70,77)(71,78)(72,79)(89,114)(90,115)(91,116)(92,117)(93,118)(94,119)(95,120)(96,113)(121,160)(122,153)(123,154)(124,155)(125,156)(126,157)(127,158)(128,159)(137,190)(138,191)(139,192)(140,185)(141,186)(142,187)(143,188)(144,189)(145,174)(146,175)(147,176)(148,169)(149,170)(150,171)(151,172)(152,173)(161,184)(162,177)(163,178)(164,179)(165,180)(166,181)(167,182)(168,183), (1,44,178)(2,179,45)(3,46,180)(4,181,47)(5,48,182)(6,183,41)(7,42,184)(8,177,43)(9,126,169)(10,170,127)(11,128,171)(12,172,121)(13,122,173)(14,174,123)(15,124,175)(16,176,125)(17,80,29)(18,30,73)(19,74,31)(20,32,75)(21,76,25)(22,26,77)(23,78,27)(24,28,79)(33,70,102)(34,103,71)(35,72,104)(36,97,65)(37,66,98)(38,99,67)(39,68,100)(40,101,69)(49,153,152)(50,145,154)(51,155,146)(52,147,156)(53,157,148)(54,149,158)(55,159,150)(56,151,160)(57,93,187)(58,188,94)(59,95,189)(60,190,96)(61,89,191)(62,192,90)(63,91,185)(64,186,92)(81,109,163)(82,164,110)(83,111,165)(84,166,112)(85,105,167)(86,168,106)(87,107,161)(88,162,108)(113,133,137)(114,138,134)(115,135,139)(116,140,136)(117,129,141)(118,142,130)(119,131,143)(120,144,132), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192), (1,152,5,148)(2,151,6,147)(3,150,7,146)(4,149,8,145)(9,109,13,105)(10,108,14,112)(11,107,15,111)(12,106,16,110)(17,139,21,143)(18,138,22,142)(19,137,23,141)(20,144,24,140)(25,131,29,135)(26,130,30,134)(27,129,31,133)(28,136,32,132)(33,57,37,61)(34,64,38,60)(35,63,39,59)(36,62,40,58)(41,52,45,56)(42,51,46,55)(43,50,47,54)(44,49,48,53)(65,90,69,94)(66,89,70,93)(67,96,71,92)(68,95,72,91)(73,114,77,118)(74,113,78,117)(75,120,79,116)(76,119,80,115)(81,173,85,169)(82,172,86,176)(83,171,87,175)(84,170,88,174)(97,192,101,188)(98,191,102,187)(99,190,103,186)(100,189,104,185)(121,168,125,164)(122,167,126,163)(123,166,127,162)(124,165,128,161)(153,182,157,178)(154,181,158,177)(155,180,159,184)(156,179,160,183)>;

G:=Group( (1,134)(2,135)(3,136)(4,129)(5,130)(6,131)(7,132)(8,133)(9,66)(10,67)(11,68)(12,69)(13,70)(14,71)(15,72)(16,65)(17,156)(18,157)(19,158)(20,159)(21,160)(22,153)(23,154)(24,155)(25,151)(26,152)(27,145)(28,146)(29,147)(30,148)(31,149)(32,150)(33,173)(34,174)(35,175)(36,176)(37,169)(38,170)(39,171)(40,172)(41,119)(42,120)(43,113)(44,114)(45,115)(46,116)(47,117)(48,118)(49,77)(50,78)(51,79)(52,80)(53,73)(54,74)(55,75)(56,76)(57,85)(58,86)(59,87)(60,88)(61,81)(62,82)(63,83)(64,84)(89,109)(90,110)(91,111)(92,112)(93,105)(94,106)(95,107)(96,108)(97,125)(98,126)(99,127)(100,128)(101,121)(102,122)(103,123)(104,124)(137,177)(138,178)(139,179)(140,180)(141,181)(142,182)(143,183)(144,184)(161,189)(162,190)(163,191)(164,192)(165,185)(166,186)(167,187)(168,188), (1,81)(2,82)(3,83)(4,84)(5,85)(6,86)(7,87)(8,88)(9,53)(10,54)(11,55)(12,56)(13,49)(14,50)(15,51)(16,52)(17,97)(18,98)(19,99)(20,100)(21,101)(22,102)(23,103)(24,104)(25,40)(26,33)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39)(41,106)(42,107)(43,108)(44,109)(45,110)(46,111)(47,112)(48,105)(57,130)(58,131)(59,132)(60,133)(61,134)(62,135)(63,136)(64,129)(65,80)(66,73)(67,74)(68,75)(69,76)(70,77)(71,78)(72,79)(89,114)(90,115)(91,116)(92,117)(93,118)(94,119)(95,120)(96,113)(121,160)(122,153)(123,154)(124,155)(125,156)(126,157)(127,158)(128,159)(137,190)(138,191)(139,192)(140,185)(141,186)(142,187)(143,188)(144,189)(145,174)(146,175)(147,176)(148,169)(149,170)(150,171)(151,172)(152,173)(161,184)(162,177)(163,178)(164,179)(165,180)(166,181)(167,182)(168,183), (1,44,178)(2,179,45)(3,46,180)(4,181,47)(5,48,182)(6,183,41)(7,42,184)(8,177,43)(9,126,169)(10,170,127)(11,128,171)(12,172,121)(13,122,173)(14,174,123)(15,124,175)(16,176,125)(17,80,29)(18,30,73)(19,74,31)(20,32,75)(21,76,25)(22,26,77)(23,78,27)(24,28,79)(33,70,102)(34,103,71)(35,72,104)(36,97,65)(37,66,98)(38,99,67)(39,68,100)(40,101,69)(49,153,152)(50,145,154)(51,155,146)(52,147,156)(53,157,148)(54,149,158)(55,159,150)(56,151,160)(57,93,187)(58,188,94)(59,95,189)(60,190,96)(61,89,191)(62,192,90)(63,91,185)(64,186,92)(81,109,163)(82,164,110)(83,111,165)(84,166,112)(85,105,167)(86,168,106)(87,107,161)(88,162,108)(113,133,137)(114,138,134)(115,135,139)(116,140,136)(117,129,141)(118,142,130)(119,131,143)(120,144,132), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192), (1,152,5,148)(2,151,6,147)(3,150,7,146)(4,149,8,145)(9,109,13,105)(10,108,14,112)(11,107,15,111)(12,106,16,110)(17,139,21,143)(18,138,22,142)(19,137,23,141)(20,144,24,140)(25,131,29,135)(26,130,30,134)(27,129,31,133)(28,136,32,132)(33,57,37,61)(34,64,38,60)(35,63,39,59)(36,62,40,58)(41,52,45,56)(42,51,46,55)(43,50,47,54)(44,49,48,53)(65,90,69,94)(66,89,70,93)(67,96,71,92)(68,95,72,91)(73,114,77,118)(74,113,78,117)(75,120,79,116)(76,119,80,115)(81,173,85,169)(82,172,86,176)(83,171,87,175)(84,170,88,174)(97,192,101,188)(98,191,102,187)(99,190,103,186)(100,189,104,185)(121,168,125,164)(122,167,126,163)(123,166,127,162)(124,165,128,161)(153,182,157,178)(154,181,158,177)(155,180,159,184)(156,179,160,183) );

G=PermutationGroup([[(1,134),(2,135),(3,136),(4,129),(5,130),(6,131),(7,132),(8,133),(9,66),(10,67),(11,68),(12,69),(13,70),(14,71),(15,72),(16,65),(17,156),(18,157),(19,158),(20,159),(21,160),(22,153),(23,154),(24,155),(25,151),(26,152),(27,145),(28,146),(29,147),(30,148),(31,149),(32,150),(33,173),(34,174),(35,175),(36,176),(37,169),(38,170),(39,171),(40,172),(41,119),(42,120),(43,113),(44,114),(45,115),(46,116),(47,117),(48,118),(49,77),(50,78),(51,79),(52,80),(53,73),(54,74),(55,75),(56,76),(57,85),(58,86),(59,87),(60,88),(61,81),(62,82),(63,83),(64,84),(89,109),(90,110),(91,111),(92,112),(93,105),(94,106),(95,107),(96,108),(97,125),(98,126),(99,127),(100,128),(101,121),(102,122),(103,123),(104,124),(137,177),(138,178),(139,179),(140,180),(141,181),(142,182),(143,183),(144,184),(161,189),(162,190),(163,191),(164,192),(165,185),(166,186),(167,187),(168,188)], [(1,81),(2,82),(3,83),(4,84),(5,85),(6,86),(7,87),(8,88),(9,53),(10,54),(11,55),(12,56),(13,49),(14,50),(15,51),(16,52),(17,97),(18,98),(19,99),(20,100),(21,101),(22,102),(23,103),(24,104),(25,40),(26,33),(27,34),(28,35),(29,36),(30,37),(31,38),(32,39),(41,106),(42,107),(43,108),(44,109),(45,110),(46,111),(47,112),(48,105),(57,130),(58,131),(59,132),(60,133),(61,134),(62,135),(63,136),(64,129),(65,80),(66,73),(67,74),(68,75),(69,76),(70,77),(71,78),(72,79),(89,114),(90,115),(91,116),(92,117),(93,118),(94,119),(95,120),(96,113),(121,160),(122,153),(123,154),(124,155),(125,156),(126,157),(127,158),(128,159),(137,190),(138,191),(139,192),(140,185),(141,186),(142,187),(143,188),(144,189),(145,174),(146,175),(147,176),(148,169),(149,170),(150,171),(151,172),(152,173),(161,184),(162,177),(163,178),(164,179),(165,180),(166,181),(167,182),(168,183)], [(1,44,178),(2,179,45),(3,46,180),(4,181,47),(5,48,182),(6,183,41),(7,42,184),(8,177,43),(9,126,169),(10,170,127),(11,128,171),(12,172,121),(13,122,173),(14,174,123),(15,124,175),(16,176,125),(17,80,29),(18,30,73),(19,74,31),(20,32,75),(21,76,25),(22,26,77),(23,78,27),(24,28,79),(33,70,102),(34,103,71),(35,72,104),(36,97,65),(37,66,98),(38,99,67),(39,68,100),(40,101,69),(49,153,152),(50,145,154),(51,155,146),(52,147,156),(53,157,148),(54,149,158),(55,159,150),(56,151,160),(57,93,187),(58,188,94),(59,95,189),(60,190,96),(61,89,191),(62,192,90),(63,91,185),(64,186,92),(81,109,163),(82,164,110),(83,111,165),(84,166,112),(85,105,167),(86,168,106),(87,107,161),(88,162,108),(113,133,137),(114,138,134),(115,135,139),(116,140,136),(117,129,141),(118,142,130),(119,131,143),(120,144,132)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176),(177,178,179,180,181,182,183,184),(185,186,187,188,189,190,191,192)], [(1,152,5,148),(2,151,6,147),(3,150,7,146),(4,149,8,145),(9,109,13,105),(10,108,14,112),(11,107,15,111),(12,106,16,110),(17,139,21,143),(18,138,22,142),(19,137,23,141),(20,144,24,140),(25,131,29,135),(26,130,30,134),(27,129,31,133),(28,136,32,132),(33,57,37,61),(34,64,38,60),(35,63,39,59),(36,62,40,58),(41,52,45,56),(42,51,46,55),(43,50,47,54),(44,49,48,53),(65,90,69,94),(66,89,70,93),(67,96,71,92),(68,95,72,91),(73,114,77,118),(74,113,78,117),(75,120,79,116),(76,119,80,115),(81,173,85,169),(82,172,86,176),(83,171,87,175),(84,170,88,174),(97,192,101,188),(98,191,102,187),(99,190,103,186),(100,189,104,185),(121,168,125,164),(122,167,126,163),(123,166,127,162),(124,165,128,161),(153,182,157,178),(154,181,158,177),(155,180,159,184),(156,179,160,183)]])

48 conjugacy classes

class 1 2A···2G 3 4A4B4C4D4E4F4G4H4I4J4K4L6A···6G8A···8H12A···12L
order12···234444444444446···68···812···12
size11···1222224444121212122···26···64···4

48 irreducible representations

dim11111222222224
type++++++++++--
imageC1C2C2C2C2S3D4D4D6D6Q16C3⋊D4C3⋊D4C3⋊Q16
kernelC22×C3⋊Q16C22×C3⋊C8C2×C3⋊Q16C22×Dic6Q8×C2×C6C22×Q8C2×C12C22×C6C22×C4C2×Q8C2×C6C2×C4C23C22
# reps111211131168624

Matrix representation of C22×C3⋊Q16 in GL6(𝔽73)

7200000
0720000
0072000
0007200
0000720
0000072
,
7200000
0720000
001000
000100
0000720
0000072
,
0720000
1720000
0007200
0017200
000010
000001
,
1720000
0720000
0017200
0007200
0000032
00005732
,
7200000
0720000
0072000
0007200
00006759
0000606

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,72,72,0,0,0,0,0,0,0,57,0,0,0,0,32,32],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,67,60,0,0,0,0,59,6] >;

C22×C3⋊Q16 in GAP, Magma, Sage, TeX

C_2^2\times C_3\rtimes Q_{16}
% in TeX

G:=Group("C2^2xC3:Q16");
// GroupNames label

G:=SmallGroup(192,1368);
// by ID

G=gap.SmallGroup(192,1368);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,675,136,1684,235,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^8=1,e^2=d^4,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽